
JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 20/2012, ISSN 1642-6037

bio-mathematical modeling, pose recognition,
movement sequences recognition, syntactic description,

natural user interface

Tomasz HACHAJ1, Marek R. OGIELA2

RECOGNITION OF HUMAN BODY POSES AND GESTURE SEQUENCES
WITH GESTURE DESCRIPTION LANGUAGE

This paper presents our new proposition of human body poses and gesture description methodology for Natural
User Interfaces. Our approach is based on forward chaining inferring schema performed on the set of rules that are
defined with formal LALR grammar. The set of rules is called Gesture Description Language (GDL) script while
automated reasoning module with heap-like memory is a GDL interpreter. We have also implemented and tested our
initial GDL specification and we have obtained very promising early experiments results.

1. INTRODUCTION

The build-in cameras and cheap multimedia devices with USB connectivity became the standard
equipment in contemporary home and mobile computer systems. Because of that there is heavy demand
on applications that utilizes those sensors. One possible field of application is Natural User Interfaces
(NI). The NI is a concept of human-device interaction based on human senses, mostly focused on hearing
and vision.

The vision communication with computer program is mainly based on exposing some predefined
body poses and movement sequences. Many methods have been yet proposed for extraction and
interpretation of those communicates from video stream. In [1] authors propose a method to quickly and
accurately predict 3D positions of body joints from a single depth image using no temporal information.
The method is based on body part labeling, extracting depth image features and randomized decision
forests. In [2] system for estimating location and orientation of a person's head, from depth data acquired
by a low quality device is presented. Approach is based on discriminative random regression forests:
ensembles of random trees trained by splitting each node so as to simultaneously reduce the entropy of
the class labels distribution and the variance of the head position and orientation. Most of the gesture
recognition approaches are based on statistical modeling, such as principal component analysis or hidden
Markov models [3]. The concept of modeling the dynamic hand gesture using a finite state machine has
been proposed in [4]. In [5] a radial basis function network architecture is developed that learns the
correlation of facial feature motion patterns and human expressions. Those recognition techniques have
many applications not only in games entertainment but also in medicine for example during rehabilitation
presses [6].

This paper presents our new proposition of human body poses and gesture description methodology
for NI. Our approach is based on forward chaining inferring schema performed on the set of rules that are
defined with formal LALR grammar. The set of rules is called Gesture Description Language (GDL)
script while automated reasoning module with heap-like memory is a GDL interpreter. In the following
paragraph we present in details our approach. We have also implemented and tested our initial GDL
specification and we have obtained very promising early experiments results.

1 Pedagogical University of Krakow, Institute of Computer Science and Computer Methods, 2 Podchorazych Ave, 30-084 Krakow, Poland,
 email: tomekhachaj@o2.pl.
2 AGH University of Science and Technology 30 Mickiewicza Ave, 30-059 Krakow, Poland, email: mogiela@agh.edu.pl.

RECOGNITION SYSTEMS

 130

2. MATERIAL AND METHODS

In order to initially test our approach we have created appropriate hardware and software
architecture (Fig .1). It is consisted of sensor for data acquisition (Kinect controller), image processing
library (OpenNI framework [7]) for user segmentation, skeleton extraction and tracking and reasoning
module that is implementation of GDL. That reasoning module is our novel and original contribution.

Fig. 1. System architecture. The detailed description is in the text.

The OpenNI framework [7] provides an application programming interface (API) for writing
applications utilizing natural interaction. This API covers communication with both low level devices
(e.g. vision and audio sensors), as well as high-level middleware solutions (e.g. for visual tracking using
computer vision). The API enables modules to be registered in the OpenNI framework and used to
produce sensory data. PrimeSense NITE Middleware [8] is a module for OpenNI providing gesture and
skeleton tracking. Skeleton tracking functionality enables detection and real-time tracking of fifteen key
points on human body (see Table 1 and Figure 2). Those key points will be called skeleton joints (or just
joints) in the rest of the article. After processing of depth sensor data NITE returns joint positions and
orientations are given in the real world coordinate system. The origin of the system is at the sensor. +X
points to the right, +Y points up, and +Z points in the direction of increasing depth. Joint positions are
measured in units of mm.

Fig. 2. Skeleton joints and the coordinate system. All body parts are mirrored because user is facing the camera.

GDL language is used for syntactic description human body poses and movement sequences. The
GDL script consists of rules set. Each rule has the logical expression and conclusion. If that expression is
satisfied the conclusion is added on the top of memory heap. The conclusion from one rule can be present
in logical expression of another rule. Multiple rules can have same conclusion. The determination of
truthfulness of all rules is made with forward chaining inferring schema by automated reasoning module.
On each level of the memory heap automated reasoner keeps information about input data (coordinates of
skeleton joints of tracked user) and satisfied rules for given state of memory heap. Each heap level keeps

RECOGNITION SYSTEMS

 131

also timestamp informing (how much time passed since last data addition to the top of the heap). Using
this time stamp program can easily check how much time has passed from now to the moment when data
was added to the chosen heap level simply by summing up all time stamps from to the top to the chosen
heap level.

Table 1. Skeleton joints in OpenNi.

Id Joint name Description (if not obvious)
1 Head Point in the middle of the user’s head.
2 Neck Point between shoulders.
3 Torso
4 LeftShoulder
5 LeftElbow
6 LeftHand
7 RightShoulder
8 RightElbow
9 RightHand
10 LeftHip
11 LeftKnee
12 LeftFoot Point in the position of left ankle.
13 RightHip
14 RightKnee
15 RightFoot Point in the position of right ankle.

GDL gives an access to heap memory by direct access to actual / previous joint coordinate value

(the level of the heap must be specified) or by indirect checking if some of possible conclusions was
satisfied in the given time period. All possible elements of GDL are presented and described in Table 2.
In GDL scripts letter case does not matter.

The GDL gives direct access to joint data tracked by OpenNI Framework but our algorithm is not
limited to this particular software solution or sensor type. The GDL implementation can be easily adapted
to any other image processing framework as long as it generates three dimensional joint-based user
tracking data.

Table 2. Elements of GDL.

Type Symbols Description
Data types
Number For example: 3.45,

jointName.x[heapPosition], result
from numeric expression and some
functions.

Double precision floating point number. Number might
be declared explicitly in the script or is returned as joint
coordinate or result from numeric expression and some
functions.
jointName.x[heapPosition] returns numeric value of
one of joint coordinates (x, y or z). Names of possible
joints are presented in Table 1. Numeric value
heapPosition determinates position of joint to be
retrieved from the memory heap (zero means top of the
heap). If joint does not exist in the given position of the
heap (for example it was not detected by the image
processing library) this expression returns 0.

Point 3D For example: [3.45,2.11,67],
jointName.xyx[heapPosition], result
from numeric expression and some
functions.

Three double precision floating point numbers. Might
be declared explicitly in the script or is returned as joint
coordinate or result from point 3D expression and some
functions.
jointName.xyz[heapPosition] returns numeric value of
joint coordinates (x, y and z). Names of possible joints
are presented in Table 1. Numeric value heapPosition
determinates position of joint to be retrieved from the
memory heap (zero means top of the heap). If joint does
not exist in the given position of the heap (for example
it was not detected by the image processing library) this
expression returns [0,0,0].

RECOGNITION SYSTEMS

 132

Logical value ConclusionName, result from logical
expression and some functions.

The binary value (true or false). Logical value is used
for checking if the condition of rule in GDL is satisfied.
The conclusion of the rule is also a logical value. If
conclusion with the given name is present on the top of
memory heap it returns logical value true. In not it
returns false.

Gesture
sequence

“[conclusion1,!conclusion2,timeRestri
ction1]
…[conclusion3,timeRestriction2]”

Sequence of sets of conclusions. Each set of
conclusions is in the square brackets. Each conclusion
in the set has to be present in the memory heap by the
time period specified in field timeRestriction (so the
first time period is from current time to current time –
timeRestriction1, next period is from current time –
time by which all conclusion occurred to current time –
time by which all conclusion occurred –
timeRestriction2 and so on). If ! precede conclusion
that means that given conclusion cannot be present in
given time period.

Rule RULE logicalValue THEN
conclusion

If logical values equals true the conclusion occurs and it
is added on the top of the memory heap.

Operators
Relational
operators

<,<=,>,>=,=,!= Binary relational operators between numeric values. If
the condition is satisfied it returns logical value true, if
not false.

Aritmetic
operators

+,-,*,/,%,^ Binary arithmetic operators between numeric values (+,-
,*,/.%,^) and point 3D values (+,-). “-“ can also be an
unary operator. ^ returns a specified number raised to the
specified power (2^0.5 is a square root of 2).

Logical
operators

&, | Logical operators between logical values.

Functions
Logical
functions

not() Negation of logical value.

Numeric
functions

abs(), sqrt() Absolute value and square root of numeric value. If the
numeric value in sqrt function parameter is negative it
generates programming language exception.

Sequence
checking
functions

sequenceexists(“GestureSequence”) Returns true if given “GestureSequence” exists in the
memory heap. Returns false if not.

Point 3D
functions

distance(point3D, point3D) Euclidean distance between two 3D points.

Others
Brackets () Bracket can be used for changing the order of

operators’ execution (arithmetic and logical).
Commentary //single Line commentary,

/* multiline commentary */

3. EXPERIMENT AND RESULTS

The GDL notation enables description of any body poses and gestures with assumption that gesture
can be partitioned into sequences of poses. In order to check the usefulness of proposed semantic
description we have created set of scripts that recognize some common behavior that might be present in
human – computer interaction. Because of the article space limitation in following text we will show only
few examples that represents different capabilities of GDL spirits. The example 1 from appendix shows
script that detects movement of the tracked user. The script checks if the position of skeleton joint in torso
has changed since last captured frame. The second example from appendix (also figure 3, first row)
demonstrates detection of "Psi" pose that is used in various vision systems for calibration purposes. The
detection here is only based on description of relative positions between skeleton joints. The third
example script detects hand clapping along horizontal axis. The proposed implementation is consisted of
two frames: with hands separate (the difference between vertical coordinates of hands has to be under
given threshold) and hands close to each other – the difference between vertical and horizontal

RECOGNITION SYSTEMS

 133

coordinates of the hands are under given threshold. The function sequenceexists checks if gestures
appear in the correct order. The last example (forth example in appendix, also figure 3 middle and bottom
row) is detection of hand clapping that is axis invariant. It works in the similar way as script from third
example.

Fig. 3. Two gestures that have been used for description of Psi pose (first row) and hand clapping sequence. In the second row user holding
his hands separately, the distance between skeleton joints that represents hands has to be over given threshold. In the last row user holding

his hands close to each other – the distance between hands are under given threshold. First column – image from RGB camera, second
column – image from depth camera with region of interest (user body) and skeleton detected, third column – tracked skeleton.

Our experiment has proved that GDL scripts processed by our reasoning framework is capable for
real time recognition of the considered gestures. That is because any body position can be expressed by
inequalities between selected skeleton joints. The sequenceexists function restricts the time period
in which the sequence should appear. The noises generated by tracking software can be compensated by
abs and distance function. Our early experiments have also showed that some well know gestures
(like those we proposed in this section) are easily reproduced (and recognize by our system) by new users
who did not have any previous experiences with tracking software.

4. DISCUSSION AND CONCLUSION

It is not a surprise that our semantic description based on formal grammar has yet proven to be
reliable in recognition of user behavior represented by few skeleton joints and poses sequences. That is
because similar semantic approaches have already been used successfully in many other pattern
classification tasks [9].

The main advantages of our approach are simplicity and intuitiveness of GDL scripts. What is more
the application of forward chaining inferring schema with memory stack concept is straightforward to any
computer programmer and makes development of movement sequences fast and effective. That type of
description does not require any training and gathering of huge movement databases. The GDL architect
has to decide which skeleton joints can be omitted to simplify the description without affecting

RECOGNITION SYSTEMS

 134

resemblance to exact movement recording. Also GDL does not limit the number and complexity level or
rules in the script. Because semantic analysis of once parsed script is not time demanding our approach
can potentially has very large rules database.

The main drawback of the methodology is that complex movement sequences might need many key
frames. That problem might be solved by finding solution of reverse problem – automatic generation of
GDL from filmed movement sequences (similarly to [10]). With proper computed aided tool that would
guide the user in process of removing needles joints and setting tolerance level it might be quite effective.
From the other hand it should also be remembered that many multimedia vision systems for natural user
interfaces use one camera for capturing the movement of user. That fact strongly limits the field of view
of the device leading to limitation in observation of some gestures in particular body positions. In those
situations some key points of the body might be invisible and difficult to predict by the software. Because
of that in many cases one can omit dependences of skeleton joint towards selected axis because the
moving sequence will not be properly registered by sensor and tracking software.

The most important goals for future researches are comparison of our approach to other existing
methods and validation its sensitivity on test datasets. We are also planning to extend our GDL
specification with new functionalities supplying the user with possibility of interacting with virtual object
and environment (for example two and three dimensional visualizations of medical images from different
modalities [11] or [12]). That would require adding new procedures to GDL and more complex memory
stack architecture. We will also consider adding some languages semantic that would allow user to define
parts of code that are used multiply times (for example possibility of variables definition).

BIBLIOGRAPHY

[1] SHOTTON F., et al., Real-time human pose recognition in parts from single depth images, CVPR, 2011, 3.
[2] FANELLI G., WEISE T., GALL J., Van GOOL L.V, Real Time Head Pose Estimation from Consumer Depth

Cameras, DAGM'11, Proceedings of the 33rd international conference on Pattern recognition, 2011, pp. 101-110.
[3] MITRA S., ACHARYA T., Gesture recognition: A survey, IEEE Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews , 2007, Vol. 37, No. 3.
[4] YEASIN M., CHAUDHURI S., Visual understanding of dynamic hand gestures, Pattern Recognition, 2000, Vol.

33, pp. 1805–1817.
[5] ROSENBLUM M., YACOOB Y., DAVIS L.S., Human expression recognition from motion using a radial basis

function network architecture, IEEE Trans. Neural Netw., 1996, Vol. 7, No. 5, pp. 1121–1138.
[6] OBDRŽÁLEK Š., KURILLO G., HAN J., ABRESCH T., BAJCSY R., Real-Time Human Pose Detection and

Tracking for Tele-Rehabilitation in Virtual Reality, Studies in Health Technology and Informatics, 2012, Vol. 173,
pp. 320 – 324.

[7] OpenNI framework homepage http://www.openni.org/
[8] Prime Sensor™ NITE 1.3 Algorithms notes, Version 1.0, PrimeSense Inc. 2010,

http://pr.cs.cornell.edu/humanactivities/data/NITE.pdf
[9] OGIELA M.R., JAIN L.C (Eds.), Computational Intelligence Paradigms in Advanced Pattern Classification,

Springer-Verlag, Berlin Heidelberg, 2012
[10] HACHAJ T., OGIELA M.R, A system for detecting and describing pathological changes using dynamic perfusion

computer tomography brain maps, Computers in Biology and Medicine, 2011, Vol. 41, pp. 402-410.
[11] OGIELA M.R., Visualization of perfusion abnormalities with GPU-based volume rendering, Computers

& Graphics, 2012, Vol. 36, Issue 3, pp. 163–169.

RECOGNITION SYSTEMS

 135

APPENDIX.- GDL SCRIPTS SOURCE CODES

Example 1. GDL script that detect movement of the tracked user.

RULE Distance(torso.xyz[0], torso.xyz[1]) > 10 THEN Movement

Example 2. GDL script that detect “Psi pose” of the tracked user.

RULE RightElbow.x[0] > Torso.x[0]
& RightHand.x[0] > Torso.x[0]
& RightHand.y[0] > RightElbow.y[0]
& abs(RightHand.x[0] - RightElbow.x[0]) < 50
& abs(RightShoulder.y[0] - RightElbow.y[0]) < 50 THEN RightHandPsi
RULE LeftElbow.x[0] < Torso.x[0]
& LeftHand.x[0] < Torso.x[0]
& LeftHand.y[0] > LeftElbow.y[0]
& abs(LeftHand.x[0] - LeftElbow.x[0]) < 50
& abs(LeftShoulder.y[0] - LeftElbow.y[0]) < 50 THEN LeftHandPsi
RULE RightHandPsi & LeftHandPsi THEN Psi

Example 3. GDL script that detect hand clapping along horizontal axis.

RULE abs(RightHand.x[0] - LeftHand.x[0]) < 80
& abs(RightHand.y[0] - LeftHand.y[0]) < 80 THEN HandsTogether
RULE abs(RightHand.x[0] - LeftHand.x[0]) > 80
& abs(RightHand.y[0] - LeftHand.y[0]) < 80 THEN HandsSeparate
RULE sequenceexists("[HandsSeparate,0.5][HandsTogether,0.5][HandsSeparate,0.5]") THEN Clapping

Example 4. GDL script that detect hand clapping and is axis invariant.

RULE distance(RightHand.xyz[0], LeftHand.xyz[0]) < 100 THEN HandsTogether
RULE distance(RightHand.xyz[0], LeftHand.xyz[0]) >= 100 THEN HandsSeparate
RULE sequenceexists("[HandsSeparate,0.5][HandsTogether,0.5][HandsSeparate,0.5]") Then Clapping

RECOGNITION SYSTEMS

 136

