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AUTOMATIC PROLONGATION RECOGNITION IN DISORDERED SPEECH
USING CWT AND KOHONEN NETWORK

Automatic disorder recognition in speech can bg Wetpful for the therapist while monitoring theygprogress
of the patients with disordered speech. In thisclartwe focus on prolongations. We analyze the aigmsing
Continuous Wavelet Transform with 18 bark scales,divide the result into vectors (using windowiragd then we
pass such vectors into Kohonen network. Quite laggech analysis was performed (5 variables wegeked) during
which, recognition above 90% was achieved. All éimalysis was performed and the results were olataiseg the
authors’ program — “WaveBlaster”. It is very impant that the recognition ratio above 90% was obkthiny a fully
automatic algorithm (without a teacher) from thenttmuous speech. The presented problem is paruofresearch
aimed at creating an automatic prolongation redagnsystem.

1. INTRODUCTION

Speech recognition is a very important branch fifrinatics nowadays — oral communication with
a computer can be helpful in real-time documentimgj language translating or simply in using a
computer. Therefore the issue has been analyzeth&émy years by researches, which caused many
algorithms to be created such as Fourier transfdrmear Prediction, spectral analysis. Disorder
recognition in speech is quite a similar issue —tnyeo find where speech is not fluent insteadrging
to understand the speech, therefore the same talgsrcan be used. Automatically generated statisfic
disorders can be used as a support for therapisieir attempts at an estimation of the therapgass.

We have decided to use a relatively new algorith@ontinuous Wavelet Transform (CWT) [1, 3,
11], because by using it we can choose scalesu@rexes) which are most suitable for us (Fourier
transform and Linear Prediction [7, 9] are notlsaible). We have chosen the bark scales set, wkich
besides the Mel scales and the ERB scales, condidera perceptually based approach [12]. The CWT
result is divided into fixed-length windows, eacheois converted into a vector. The vectors, using
another window are grouped, marked if this grogststwith a sound repetition or not and passed onto
the Kohonen network which receives 3D data andywes 2D data. On such a modified signal (Kohonen
countour) we are searching for the prolongations.

Quite large recognition statistics was creatediolstg very high recognition ratios.

Most of the theoretical aspects of this work aractly the same as in our previous article [5],
because in both cases we describe smaller patie afne, bigger project. Therefore in chapters® &an
we place only brief description of this theory (maletails are in our previous article [5]).
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2. CWT

2.1. MOTHER WAVELET

Mother wavelet is the heart of the Continuous Wetv&tansform:

CWT,, = Z X(t) W, (1), Where‘//a,b t) = %w(%j ?

wherex(t) — input signaly,p(t) — wavelet familyy(t) — mother wavele — scale (multiplicity of mother
wavelet),b — offset in time. We used Morlet wavelet of thenfd7]:

W(t) = e '? [toser200) 2)

which has center frequen&y¢=20Hz.

2.2.SCALES

For frequencies of scales we decided to use Hagoales [15]:

2681

=_ €99 _ 053, f—freq. in Hz 3
1+1960/ f

and the frequency of each wavelet s@leas computed from the equation
F, = F.Fs/a, Fs— sampling frequency 4)

During the research we decided to remove 4 scaemsagnificant in the recognition process
(marked as crossed), therefore eventually onlycaBes were used.

Table 1. 22 scales a (and scale’s shift b) witlesponding frequencies f and bark scales B.
By removing crossed scales we increased recogniigm

138

a[scale] f [HZ] B [bark] a[scale] f [HZ] B [bark]
46 9586 21,7 297 1484 11
57 7736 20,9 347 1270 10
68 6485 20,1 408 1080 9
83 5313 19,1 479 920 8
100 4410 18 572 770 7
119 3705 17 700 630 6
140 3150 16 864 510 5
163 2705 15 1102 400 4
190 2321 14 —1470 300 3
220 2004 13 —2205 200 2
256 1722 12 —4410 100 6;8

After CWT,y, is calculated, we find it more useful to:

calculate its module |CWTa,b|
smooth it out (see Figure 1)
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Fig. 1. Left: Cross-section of ol@\Ta,b scale. Right: Cross-section of o@¥\Ta,b| scale
and its contour (smoothed version).

» divide it into windows: we cut spectrogram, conagtof 18 smoothed bark scales vectors, into
23.2ms frames (512 samples when FS=22050Hz), wib0& frame offset. Because every scale
has its own offset — one window of fixed width (€642 samples) will contain different number of
amplitudes (CWT similarity coefficients) in eachakx (see Figure 2), therefore we take the
arithmetic mean of each scale's amplitudes.

D.516s 0.520s D524 0.5%28s D.5532s

Fig. 2. One CWT window (512 samples whes 22050H2).

From one window we obtain the vectérof the form presented in eq. 5. Such consecutaeors
are then passed into the Kohonen network.

7 ={rean(owr, | mean(oW,,)... mean(cWE, ) mean(owr, ) ®

3. KOHONEN NETWORK

We also use the Kohonen network ([10], [6]) (orf‘®eganizing map”, or SOM, for short) with a
standard WTM (winner takes most) learning algoritama Euclidean metric. As a result of such learning
we can say that, in a Kohonen map, neurons logaltedically next to each other will correspond to
classes of input vectors that are likewise nexdaoh other (Figure 4). Therefore such regions altect
maps.

We number the Kohonen neurons by rows from thaddpe bottom so that we could present them
in 2D form

0 1 2 3 4
5 6 7 8 9
10 | 11| 12| 13] 14

For every 2D CWT vector (see eq. 5) we obtain omeniwg neuron. Therefore we use the
Kohonen network to convert 3-dimention CWT speataog (which consists of 2D CWT vectors laying
one next to other) into 2-dimentional winning neucontour ([13], [14]).
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Fig. 3. Converting 3D CWT (Left pictur®.axis: the bark scal& axis: the time) into 2D Kohonen winning neuron tocam
(Right picture.Y axis: winning neuronX axis: the time).
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3.1.LEARNING ALGORITHM MODIFICATION

We changed a little bit the learning algorithm. make it to give more stable contours (Fig 4.) i.e.
every time the same, no matter how the network iniiated, we set Oth neuron weights with zeros and
mark them as read-only. They take part in all caafpens but when it comes to weights changing — we
do not allow it. Therefore 0-th neuron always puilence (which is always the weakest signal) @ th
top-left corner, then top-left corner (with neigidpo gathers weak signal, therefore strong signal is
naturally placed in bottom-right corner.

Ms 0285 04845 06975 08105 10B1s 1303 16 1aGs iz 0235 04645 0697 082 11615 1300s 1M 1486 N5 013 0464 06975 0810 1I61s 13035 18265 1858

Fig. 4. Different Kohonen winning neuron contolRgght-most result is obtained using modified aldorittherefore
silence is always placed in or near 0-th neuron.

We also added additional step into the learninggse [4] which was not used in our previous
research [5]. This step is applied after the netwioas been trained using the standard algorithm
described previously. The purpose is to reduce eaah (which contains similar neurons) to only one
neuron within one map.

We do the following:

* Find two closest neuronks, ks (the distance between neurons weights are measisiag
Euclidean metric)

» If the distance is less than some threshold (alyois parameter), fill weights of one of the
neurons with zeros. This way input vectors thateagssigned t&g neuron, now will be assigned
to Ka

» Repeat steps 1. and 2. until there exists a paieofons closer than the threshold.

The result of the reducing procedure is shown gufgs 5 and 6. As we can see, such a result is
much clearer and therefore more useful than an difiad result.
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Fig. 5. Winning neuron contour of the 2 secondg lotierance with prolongation “sss” without (on tef) and with (on the right) ‘neuron
reduction’. Kohonen network size: 5x5. Verticalsxvinning neuron number, horizontal axis: time.
Screenshot from program “WaveBlaster”.

The algorithm treats the silence as the prolongati® well. Because we couldn't find clear and
easy way to distinguish silence prolongations frdterance prolongation on the winning neuron contou
(statistics were showing many algorithm mistake&),decided to use simple utterance-finding algorith
and search for the prolongations only in utterdrmgments.
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4. AUTOMATIC DISORDERED SOUND REPETITIONS RECOGNITION

4.1.INPUT DATA

We took Polish disordered speech recordings ofr§gos and Polish fluent speech recordings of 4
persons. In the disordered speech recordings weeddbprolongations with

4-second surroundings and from fluent speech weoraty chose several 4-second long sections.
We merged all the pieces together obtaining 18 3&irs long recording containing 373 prolongations.
The statistics are the following:

Table 2. Disordered sound prolongation counts.

ale|flg|h]i|]j|m|n|jo|s|s|s|u|w]|y]|z]|zZz]|z|Al

4110] 11 1) 8] 12 13 17 29 16 65 15 B9 |6 (34 |26 |46 6 | 333

4.2. ALGORITHM

The procedure of finding prolongations in the filas the following:

» Compute CWT spectrogram for the entire file

» Divide the spectrogram into ‘small’ windows (we ds23.2 ms) with a certain offset (we used
23.2 ms). By using windowing (see section 2 fomadg} each ‘small’ window is converted into a
set of 18 element vectors (each element of a vextoesponds to one bark scale). A vector is
marked as silence if all its values are less th&dB (where 0dB is the maximum value).

* Find words (that is a sequence of non-silence vgct®nly words longer than min ProlongWidth
parameter were taken.

» For some tests we use additional parameter wordhengt means how long a fragment should
be. If a word was less than wordLength it was cilh wordLength length anyway and if it was
longer — it was divided into windows of wordLengilze (with offset equaling 300ms)

» Each word which consists of 18-element vectors passed into the Kohonen network. After the
learning process (with ‘neuron reduction’) we obé&al a winning neuron graph (Figure 5)

* If a winning neuron contour (Figure 5) containedsection longer than minProlongWidth
parameter, in which only one neuron wins, then ¢kigion was considered as prolongation.

» If the section (marked as a prolongation) overlapgp@me other automatically found prolongation,
then the sections were combined creating one loolgmyation.

* Finally, we manually compared the pattern with éhgoorithm output and counted the number of
correctly and incorrectly recognized prolongations.

» The recognition ratio was calculated by using tvenulas [2]:

sensitivity = %; predictability = PTPB (6)

whereP is the number of correctly recognized disordérss the number of all disorders aidis the
number of fluent sections mistakenly recognizediasrders.

5. RESULTS

We wanted to test the following variables:
* minProlongWidth (mpw) — in milliseconds (describad}.2),
* wordLength (wl) — in milliseconds (described in ¥.®or some tests this parameter was not
set, which meant that words had variable length,
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* Kohonen’s network size (ks) — AxB, where A is thember of rows, B is the number of
columns,

« Kohonen’s neighbour values (kn) — A_B, where A ®arting neighbor factor, B is an ending
neighbor factor. Kohonen network is learning fol0 lpochs and the neighboring factor is
linearly decreasing (learning factor changed frot6 0.1 linearly),

» Kohonen’s ‘reducing neuron’ distance (kd) — (desediiin 3).

The results are presented in the Table 3.

Table 3. Automatic disordered sound prolongati@ogaition results [in %].
S — sensibility and P — predictability, kd — Kohorieeducing neuron’ distance, wl — wordLength,
ks — Kohonen network size, kn — Kohonen neighbtiress mpw — minProlongWidth.

kd=0.30 | kd=0.35 | kd=0.40 | kd=0.45 | kd=0.50 | kd=0.55
S| P|S|P|S|P|S|P|S|P|S]|P

series 1

wl=not_set ks=3x3 kn=2.5_0.5mpw=250 | 63 94 68 94 71 95 74 93 78 90 81 87
wl=not_set ks=3x3 kn=2.5_1.0mpw=250 | 74 80 76 76 80 76 82 73 85 69 86 67
wl=not_set ks=4x4 kn=2.5_0.5mpw=250 | 49 94 52 94 60 94 63 94 68 93 75 92
wl=not_set ks=4x4 kn=2.5_1.0mpw=250 | 62 92 65 89 71 88 76 84 78 81 84 81
series 2

wl=not_set ks=3x3 kn=2.5_0.5mpw=200 | 75 76 81 77 82 77 84 76 87 74 90 70
wl=not_set ks=3x3 kn=2.5_1.0mpw=200 | 77 80 78 76 81 72 84 70 87 67 90 51
wl=not_set ks=4x4 kn=2.5_0.5mpw=200 | 61 87 66 87 72 86 76 86 81 82 84 80
wl=not_set ks=4x4 kn=2.5_1.0 mpw=200 | 76 78 80 76 83 73 84 70 86 67 89 63
series 3

wl=not_set ks=5x5 kn=2.5_0.5mpw=250 | 37 95 43 95 52 98 57 96 62 96 68 95
series 4

wl=1500 ks=3x3 kn=2.5 0.5mpw=250 | 78 83 81 84 82 83 85 82 86 80 87 78
wl=1500 ks=3x3 kn=2.5 1.0 mpw=250 | 84 72 80 68 81 64 90 64 91 61 93 59
wl=1500 ks=4x4 kn=2.5_0.5mpw=250 | 62 89 63 90 72 90 80 89 83 88 84 86
wl=1500 ks=4x4 kn=2.5_10mpw=250 |77 86 80 84 85 82 86 78 90 77 91 74
series 5

wl=1500 ks=3x3 kn=2.5_0.5mpw=200 | 88 66 91 68 92 66 92 64 93 62 94 60
wl=1500 ks=3x3 kn=2.5 1.0 mpw=200 | 90 55 92 52 93 50 94 47 96 45 96 43
wl=1500 ks=4x4 kn=2.5 0.5mpw=200 | 77 81 81 80 87 80 89 77 92 73 94 73
wl=1500 ks=4x4 kn=2.5_ 1.0mpw=200 | 89 72 90 66 93 65 95 63 96 59 97 56
series 6

wl=1500 ks=5x5 kn=2.5_0.5mpw=250 | 49 92 63 93 65 93 66 91 74 91 77 88
series 7

wl=1000 ks=4x4 kn=2.5_0.5 mpw=250 51 93 59 92 62 92 69 91 73 90 80 88
wl=1500 ks=4x4 kn=2.5_0.5 mpw=250 62 89 63 90 72 90 80 89 83 88 B84 86
wl=2000 ks=4x4 kn=2.5_0.5 mpw=250 67 91 71 91 75 89 78 87 80 86 85 85
wl=2500 ks=4x4 kn=2.5_0.5 mpw=250 73 91 77 88 78 88 81 87 82 85 92 82
wl=3000 ks=4x4 kn=2.5_0.5 mpw=250 76 89 78 87 81 83 83 86 84 84 87 84
wl=3500 ks=4x4 kn=2.5_0.5 mpw=250 73 88 77 88 77 88 82 86 82 82 87 79
series 8

wl=2500 ks=5x5 kn=2.5_0.5 mpw=250 60 92 65 91 68 90 75 89 79 88 82 86
wl=3000 ks=5x5 kn=2.5_0.5 mpw=250 65 93 70 92 74 91 75 89 79 89 83 86
wl=3500 ks=5x5 kn=2.5_0.5 mpw=250 69 93 72 91 72 90 77 89 82 87 82 83
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6. CONCLUSIONS

In first two series of tests we wanted to checkitygact of:

* minimal prolongation width (mpw) parameter and Koéo network size. Two values were
checked 200ms and 250ms because most of the pationg are longer than 250ms, but there are
some shorter ones (the shortest has 226ms length),

» Kohonen network size (ks) — two values were checkedl (9 neurons) and 4x4 (16 neurons).
Larger or smaller nets were ignored because newoust is not proportional to a number of
phonemes in a word.

» Kohonen neighbor factor (kn) — two values were kbdc2.5 1.0 and 2.5_0.5. First set does not
narrow its neighboring into a single neuron sdetrning is more general, while the second set
has more sharpening ending value.

All tests were performed for Kohonen reduction (kdanging from 0.30 to 0.55.

In most cases mpw=250ms gave better results —vi gdlittle worse sensibility (so it found less
prolongations - which was obvious as the lengthdd@n is more demanding), but it gave much better
predictability (the algorithm made less mistakdr)all cases kn=2.5_0.5 gave better results then th
same configuration but with kn=2.5_1.0. Networleglzs=3x3/4x4) did not give significant differences

Just in case we did th&"3eries of tests for ks=5x5, but it gave worseltssu

Series 4,5 and 6 corresponded to series 1, 2 ahdt 3yith different word cutting — wl parameter
was set to 1500ms. All results were equal or békten the same set of parameters but with wl niot se
We can see here also that ks=4x4 gave better sdbalt ks=3x3.

So as a conclusion from six series of test we earttsat the best results are for ks=4x4, kn=2.5 0.5
and mpw=250 ms.

As the last parameter we checked the wl — whichnwebered as series 7. Because for longer
words number of phonems increases, just in casesheeked the bigger Kononen net too (series 8) to
have number of neurons corresponding to numbehoh@ms in the word but like in series 3 and 6, net
size 5x5 gave worse ratios.

Series 7 gave us the best result S=92%, P=82% winclind a very good ratio. Predictability
could be higher (algorithm could make less mistakes we need to remember that this is recognition
the continuous speech, therefore number of fluemtds is disproportionately higher than disordered
fragments). The similar recognition ratio (91%) veafieved by our research group using FFT and fuzzy
logic [16] but the research was performed on theuaHy cut fragments. Our test was done on the
continuous speech which we find to be more difficul

For every series, all kd values were checked. Ascam see, increasing this parameter causes
increasing of sensibility but decreasing of preadity. Higher values were not checked becausajast
cases, the decrying of predictability was equdligher than increasing of sensibility.

All the results are leading us to the final conmus that wi=2500 ks=4x4 kn=2.5_0.5 mpw=250
kd=0.55 is the best configuration from the seardpate of parameters.
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